Batch
class great_expectations.datasource.fluent.interfaces.Batch(datasource: Datasource, data_asset: DataAsset, batch_request: BatchRequest, data: BatchData, batch_markers: BatchMarkers, batch_spec: BatchSpec, batch_definition: LegacyBatchDefinition, metadata: Dict[str, Any] | None = None)#
This represents a batch of data.
This is usually not the data itself but a hook to the data on an external datastore such as a spark or a sql database. An exception exists for pandas or any in-memory datastore.
- columns()List[str] #
Return column names of this Batch.
- Returns
List[str]
head(n_rows: pydantic.v1.types.StrictInt = 5, fetch_all: pydantic.v1.types.StrictBool = False) great_expectations.datasource.fluent.interfaces.HeadData #
Return the first n rows of this Batch.
This method returns the first n rows for the Batch based on position.
For negative values of n_rows, this method returns all rows except the last n rows.
If n_rows is larger than the number of rows, this method returns all rows.
- Parameters
n_rows: The number of rows to return from the Batch. fetch_all: If True, ignore n_rows and return the entire Batch.
- Returns
HeadData
- validate(expect: Expectation)ExpectationValidationResult #
- validate(expect: ExpectationSuite)ExpectationSuiteValidationResult